14,384 research outputs found

    Tuning thermal transport in nanotubes with topological defects

    Full text link
    Using the atomistic nonequilibrium Green's function, we find that thermal conductance of carbon nanotubes with presence of topological lattice imperfects is remarkably reduced, due to the strong Rayleigh scattering of high-frequency phonons. Phonon transmission across multiple defects behaves as a cascade scattering based with the random phase approximation. We elucidate that phonon scattering by structural defects is related to the spatial fluctuations of local vibrational density of states (LVDOS). An effective method of tuning thermal transport in low-dimensional systems through the modulation of LVDOS has been proposed. Our findings provide insights into experimentally controlling thermal transport in nanoscale devicesComment: 10 pages, 3 figure

    Two-orbital Systems with Crystal Field Splitting and Interorbital Hopping

    Full text link
    The nondegenerate two-orbital Hubbard model is studied within the dynamic mean-field theory to reveal the influence of two important factors, i.e. crystal field splitting and interorbital hopping, on orbital selective Mott transition (OSMT) and realistic compound Ca2x_{2-x}Srx_{x}RuO4_{4}. A distinctive feature of the optical conductivity of the two nondegenerate bands is found in OSMT phase, where the metallic character of the wide band is indicated by a nonzero Drude peak, while the insulating narrow band has its Drude peak drop to zero in the mean time. We also find that the OSMT regime expands profoundly with the increase of interorbital hopping integrals. On the contrary, it is shown that large and negative level splitting of the two orbitals diminishes the OSMT regime completely. Applying the present findings to compound Ca2x_{2-x}Srx_{x}RuO4_{4}, we demonstrate that in the doping region from x=0.2x=0.2 to 2.0, the negative level splitting is unfavorable to the OSMT phase.Comment: 7 pages with 5 figure
    corecore